Discriminative models for spoken language understanding

نویسندگان

  • Ye-Yi Wang
  • Alex Acero
چکیده

This paper studies several discriminative models for spoken language understanding (SLU). While all of them fall into the conditional model framework, different optimization criteria lead to conditional random fields, perceptron, minimum classification error and large margin models. The paper discusses the relationship amongst these models and compares them in terms of accuracy, training speed and robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept segmentation and labeling for conversational speech

Spoken Language Understanding performs automatic concept labeling and segmentation of speech utterances. For this task, many approaches have been proposed based on both generative and discriminative models. While all these methods have shown remarkable accuracy on manual transcription of spoken utterances, robustness to noisy automatic transcription is still an open issue. In this paper we stud...

متن کامل

A Discriminative Approach to Grounded Spoken Language Understanding in Interactive Robotics

Spoken Language Understanding in Interactive Robotics provides computational models of human-machine communication based on the vocal input. However, robots operate in specific environments and the correct interpretation of the spoken sentences depends on the physical, cognitive and linguistic aspects triggered by the operational environment. Grounded language processing should exploit both the...

متن کامل

Re-Ranking Models for Spoken Language Understanding

Spoken Language Understanding aims at mapping a natural language spoken sentence into a semantic representation. In the last decade two main approaches have been pursued: generative and discriminative models. The former is more robust to overfitting whereas the latter is more robust to many irrelevant features. Additionally, the way in which these approaches encode prior knowledge is very diffe...

متن کامل

Discriminative methods for improving named entity extraction on speech data

In this paper we present a method of discriminatively training language models for spoken language understanding; we show improvements in named entity F-scores on speech data using these improved language models. A comparison between theoretical probabilities associated with manual markup and the actual probabilities of output markup is used to identify probabilities requiring adjustment. We pr...

متن کامل

A Factored Discriminative Spoken Language Understanding for Spoken Dialogue Systems

This paper describes a factored discriminative spoken language understanding method suitable for real-time parsing of recognised speech. It is based on a set of logistic regression classifiers, which are used to map input utterances into dialogue acts. The proposed method is evaluated on a corpus of spoken utterances from the Public Transport Information (PTI) domain. In PTI, users can interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006